

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. N

# **17ME42**

b. In Fig.Q5(a), if  $r_2 = 100$ mm  $r_3 = 350$ mm,  $\theta_2 = 60^\circ$ , find angular velocity and angular acceleration of connecting rod if crank rotates uniformly at 600 rpm in CCW direction.

(12 Marks)

### OR

For the 4-bar mechanism shown in Fig.Q6, obtain Frendenstein's equation. 6 a.

(08 Marks)



b. Find  $r_2$ ,  $r_3$  and  $r_4$  to generate a function  $y = x^3$ ,  $1 \le x \le 3$  accurate at x = 1.1339, x = 2 and x = 2.866 if  $r_1 = 100$  mm,  $\theta_s = 30^\circ$ ,  $\theta_f = 90^\circ$ ,  $\phi_s = 45^\circ$  and  $\phi_f = 135^\circ$  with respect to Fig.Q6. (12 Marks)

## Module-4

Define 'pitch circle', 'circular pitch', 'diametral pitch' and 'module'. 7 a. (08 Marks) Obtain an expression for the minimum number of teeth on pinion to avoid interference. b.

(12 Marks)

## OR

An epicyclic gear train consists of a sun-wheel S, a stationary internal gear E and three identical planet wheels P carried on a star shaped planet carrier C. The size of different tooth wheels are such that the planet carrier C rotates at 1/5<sup>th</sup> of the speed of the sunwheel S. The no. of teeth on sun-wheel is 16. The driving torque on the sun-wheel is 100 N-m. Determine (i) no. of teeth on P and E. (ii) Torque required to keep the internal gear stationary.

(20 Marks)

### Module-5

From the following data draw the profile of a cam in which the follower moves with SHM during ascent while it moves with uniform acceleration and deceleration during descent. Cam rotates in anticlockwise

Lift of follower : 4 cm

Angle of ascent : 48°

Angle of dwell between ascent and descent : 42°;

Angle of descent =  $60^{\circ}$ 

8

9

The diameter of roller = 3 cm

Least radius of cam : 5 cm

If cam rotates at 360 rpm, find maximum velocity and acceleration of the follower during descent. (20 Marks)

# OR

Explain with sketch in brief 'radial cam' and 'cylindrical cam'. 10 a. (06 Marks) Obtain expressions for displacement, velocity and acceleration for a flat faced follower in b. contact with circular flank of a cam. (14 Marks)

### 2 of 2